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‘Internal evidence’ suggests that
classical gravity has the same conceptual
status as elasticity/hydrodynamics
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WHY ?

How do we understand this
macroscopically and microscopically?
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of energy it must have
a thermodynamic interpretation!



If gravity is immune to zero level
of energy it must have
a thermodynamic interpretation!

Connects two features usually thought
to be completely separate!
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Macroscopic Nature Of Gravity

Field equations arise from maximizing
entropy/heat density of gravity plus
matter on all null surfaces.

Q TS 1

H = _(E—F)=Ts
Vv V. VvV

Q= /dAdza;ﬁ (Hy + Hom)

Works for a wide class gravitational theories;
entropy decides the theory.
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Macroscopic Nature Of Gravity

Evolution arises from departure from
holographic equipartition:

Time evolution < (Ngy — Npuk)
All static geometries have

N, sur — N, bulk
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Macroscopic Nature Of Gravity

Gravity responds to heat density
(I's = p + p) — not energy density!

Cosmological constant arises as an
integration constant.

Its value is determined by a new
conserved quantity for the universe!



The Atoms Of Space



The Atoms Of Space

The distribution function for ‘atoms of
space’ provides the microscopic origin for
the variational principle



The Atoms Of Space

The distribution function for ‘atoms of
space’ provides the microscopic origin for
the variational principle

Points in a renormalized spacetime has
zero volume but finite area!
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Building Gravity: Brick By Brick

KINEMATICS: “How spacetime
makes matter move”

DYNAMICS: “How matter makes
spacetime curve”



Spacetime in Arbitrary Coordinates

Arbitrary

Event \ ]
\

Null rays
through P




Local Inertial Observers

Rxx ~ 1
limit of validity of
local inertial frame

Validity of laws of SR = How gravity affects matter

Matter equations of motion & V, 7' =0
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Regions of spacetime can be inaccessible
to certain class of observers in any
spacetime!



General covariance
Democracy of all observers

Regions of spacetime can be inaccessible
to certain class of observers in any
spacetime!

Take non-inertial frames seriously: not
“just coordinate relabeling”.
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Spacetimes, Like Matter, Can Be Hot

The most beautiful result in
the interface of quantum theory and gravity

OBSERVERS WHO PERCEIVE A HORIZON
ATTRIBUTE A TEMPERATURE TO SPACETIME

hi(g
kpT = — | —
B c<27r>

Temperature is independent of the
field equations of the theory!

[Davies (1975), Unruh (1976)]



FLAT SPACETIME

T

N

Qg\/o accelerated
Q\O OBSERVER




Local Rindler Observers

T
Local Rinder
observer

X k1 R1/2

Rxx ~ 1

limit of validity of
local inertial frame
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Vacuum fluctuations — Thermal fluctuations

A VERY NON-TRIVIAL EQUIVALENCE!

QFT in FFF introduces 1.; we now have (h/c) in the temperature
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» Heat transfered due to matter crossing a null
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Local Rindler Horizon

» Heat transfered due to matter crossing a null
SU rface : [T. Jacobson, gr-qc/9504004]

Qum = / VA Bz dX (ToplL?);  Hop = Tapll?

» Note: Null horizon <> Euclidean origin

X2 _T?’=0< X?>4+T2=0



T = xsinh kt, X = x cosh kt Tg = xsin ktg, X = x cos kig

X2-T?=0& X*+T2=0



Tg
Rxx ~ 1
limit of validity of
local inertial frame

Local Rinder
observer

Kl R-V2
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Guiding Principle For Dynamics

Matter equations of motion remain
invariant when a constant is added to the
Lagrangian

Gravity must respect this symmetry
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Guiding Principle For Dynamics

The variational principle for the dynamics
of spacetime must be invariant under
T — T 4 (constant) &y

The variational principle cannot have
metric as the dynamical variable!
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But, Then ...

Variational principle must have the form

Q— / AV H[TE, Gaps 4]

How can we vary g4 but get equations for g,;,?

How can H depend on T but yet be invariant
under T — T + (constant) §; ?
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The Variational Principle

» Minimal possibility: We must have
Q = [ aV{Hylgur,ma] + Timan')
where n, is an auxiliary null vector field

» Demanding (6Q/dn,) = 0 for all n, at any
given event should lead to:

E ~ T + A8 V.E* =0

Can one find such a H4[gap, o] ?
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T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]
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Dynamics Of Gravity

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]
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Dynamics Of Gravity

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

» Choose
H,=——— )| (4P®V n°Vyn?
g <167TL2P) ( cd b )
with
a aba i@ bm P cmdm
Pcdb X 605022522...07715"1 Razztlizz * e Rambm
» This gives

. 1
a — pai k a a a
E; = P R}; — §5bR = (8w L%)T + Ady,

» These are Lanczos-Lovelock models of gravity. Ind = 4, it
uniquely leads to GR

GY = (8w L2)T + ASg
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Interpretation

How do we interpret H,(x*, n,) and the auxiliary
null vector n,?

Macroscopically H,(z¢, n,) is the heat density of
null surfaces with n, < ¢,

Microscopically H,(z?, n,) is the ‘distribution
function for atoms of space with momentum’ n,
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The Thermodynamic Connection

» Macroscopically, identify n, < £, and

Ouot = / VA BPxd (Hy[l] + Honl£])

» The H, + H,,, is the total heat density of the null
surface.

Extremizing the heat densities of all null surfaces
leads to gravitational dynamics!
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The Thermodynamic Connection

1
H, = — AP 0V 02
g (167rL§,) (4P ot")

~ The P2 is the entropy tensor of the spacetime
which determines the theory

» The entropy density of horizons:

1
_ abcd
S = — g \/’7P €ab€cd [lyer and Wald (1994)]
» On-shell value of Q.

on—shell __ 2
tot = /d x(Tioc 8)

A2
A1
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Atoms of Space

Boltzmann: If you can heat it,
it must have micro-structure!

» To store energy AE at temperature T, you need

AFE

AN = kT

degrees of freedom. Connects microphysics with
thermodynamics!

» You can heat up spacetime! Do we have an
equipartition law for the microscopic spacetime
degrees of freedom?



The Quantum of Area
TP, [gr-qc/0308070]; [0912.3165]; [1003.5665]

Equipartition with a surface-bulk correspondence

E / A <1k3 T, ) 1k: / dn T
ulk — — | =KB1lioc | = KB N Lloc
pulk ay L% \2 2 aV

Associates dn = dA /L% atoms (microscopic
degrees of freedom) with an area dA



Holographic Equipartition

T.P. [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]
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Holographic Equipartition

T.P. [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]
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Holographic Equipartition

T.P. [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

Z

k
g«

=Yy

Equipotential surface %

S



Holographic Equipartition

T.P. [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]
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Holographic Equipartition

T.P. [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

z Yloc,

k

=Yy

N _ 1B
bulk [(1/2)kBTav]

Nsur = Npy1k !

Equipotential surface




We must be able to express — and
interpret — the field equation in a purely

thermodynamic language !
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Geometry < Thermodynamics

K. Parattu, B.R. Majhi, T.P. [arXiv:1303.1535]
qab — \/jggab
1
— d d
pgc — _Fgc + E(de(sg T chdg)
These variables have a thermodynamic

interpretation
(gdp, pdq) < (s6T,T4s)
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What Makes Spacetime Evolve ?

T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

dX 1
a m a —
/ 8 L2 [q 8 pgm] — 2kBTaV (Nsur Nbulk)

A\ 7
~”

time evolution of spacetime

= heating of spacetime



What Makes Spacetime Evolve ?

T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

/dz" ("0 p? | = s T, (N, Npuik)
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time evolution of spacetime deviation from

= heating of spacetime holographic equipartition



What Makes Spacetime Evolve ?

T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

dza m a 1
/ [q 0 pgm] — _EkBTaV (Nsur - Nbulk)

2
8wLp
time evolution of spacetime deviation from
= heating of spacetime holographic equipartition

This replaces the field equation for gravity
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Newton’s law of gravitation

T.P. [hep-th/0205278]

Three constants: h, ¢, L%,
Temperature = (h/c); Entropy = L%

= (%) (72)
h 72
Gravity, like matter, is intrinsically

quantum and cannot exist in the
limit of h — 0!
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Momentum of Gravity

T.P. [arXiv:1506.03814]

V—gP%v] = —\/—gRv" — q” £,p};
J

Restores momentum conservation to nature!
Vao(P* + M*) = 0 for all observers imply field
equations

Variational principle has a physical meaning:

Qo = — / dV €, [P*(€) + M°(€)]
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S. Chakraborty, K. Parattu, and T.P. [arXiv:1505.05297]; S. Chakraborty, T.P. [arXiv:1508.04060]




Fluid Mechanics Of Spacetime

S. Chakraborty, K. Parattu, and T.P. [arXiv:1505.05297]; S. Chakraborty, T.P. [arXiv:1508.04060]
Three projections P*¢,, P°k,, P°q" on a
null surface give

> NaVIeI’-StOkeS equatlon [T.P., arXiv:1012.0119]
> TdS = dE —|_ PdV [T.P., gr-qc/0204019; D. Kothawala, T.P., arXiv:0904.0215]

» Evolution equation for the null surface
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What Next?
T.P. [arXiv:1508.06286]

Understand this from a deeper, microscopic, level:

» Origin of the auxiliary vector field n,
» Why are null vectors selected out?

» Determine H,; use alternative, dimensionless,

form: "
H, = —g(Lngabnanb)
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Algebraic Aside

» Kinetic energy should be be (1/2)M,n®n® rather
than (Vn)?2

» Interestingly enough:

2PV, eV ynd = Rupnnt { ignorable }

total divergence

» Alternative, dimensionless, form:

1
K, = —— (L3 Ryn®n’
g 871'( pftab )
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The Challenge

How can we get H, from a microscopic
theory without knowing the full QG?

We need to recognize discreteness and
yet use continuum mathematics!
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Atoms Of A Fluid

» Continuum fluid mechanics: p(z?!), U(x?), ....
ignores discreteness and velocity dispersion.

» Kinetic theory: dN = f(x, p;)d3xd3p

« Recognizes discreteness, yet uses continuum maths!
- Atom at x* has an exitra attribute p;.
« Many atoms with different p; can exist at same z*
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The ., is proportional to the f(x*,n;) for the
number of atoms of space “at” x* with
“momentum” n;. In dimensionless form:
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Atoms of Space

The ., is proportional to the f(x*,n;) for the
number of atoms of space “at” x* with
“momentum” n;. In dimensionless form:

d(Q/ EP) 7 2
We expect f(x*, n;) to be proportional to the
volume or the area measure “associated with” the
event =* in the spacetime

Use equi-geodesic surfaces to make this idea
precise
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Geodesic Interval

D. Kothawala, T.P. [arXiv:1405.4967]; [arXiv:1408.3963]

The geodesic interval o?(x, ') and metric g4, has
same information about geometry:

o(x,z’) :/ V gapn®nbd

A2 2
—V aVb0? = gap — Egab + —n ‘'ViEap + O(NY)

— k. j
n; = VjO', gab = Rakbjn n’



equi-geodesic
z surface

S(m’; a')

ds? = do? + 02d9%53)

Vg x o? vh x o



equi-geodesic

/ surface
S(z'50)

ds® = do? 4 hopdx®dxP

The \/g = v'h will pick up curvature corrections



equi-geodesic

/ surface
S(w'; a')

ds®> = do? + hogdx®dxP

2
Vh(z,2') = /g(z,2') = o (1 — %8) Vha; & = Rgyn°nb
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Zero-Point Length

T.P. Ann.Phy. (1985), 165, 38; PRL (1997), 78, 1854

We need a quantum of area for the idea to work;
this has to come as a QG effect

Quantum spacetime has a zero-point length:

o’(z,x’) — S(0?) = o*(z,2') + L2
gab(m) — qab(waw,;Lg)

D. Kothawala, T.P. [arXiv:1405.4967]; [arXiv:1408.3963]
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The number of atoms of space at x* with attribute
(“momentum’) n; scales as volume or area
measure of the equigeodesic surface in the
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Origin of Null Vectors

The number of atoms of space at x* with attribute
(“momentum’) n; scales as volume or area
measure of the equigeodesic surface in the

quantum Euclidean space when '’ — x

f(wi,nj) X \/g(wzv nj) OR \/E(wz’ nj)

The o2 — 0 limit picks null vectors! Euclidean
origin maps to local Rindler horizons.
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Area Of A Point
T.P. [arXiv:1508.06286]

Vi=a(o*+13) |1 i€ (0* + 1) Vin

VA = (o2 + 12)*” {1 = i Lg)] Vha

Points have no volume but finite area:

1
vh = L3 {1 - gng} Vha

Aside: Spacetime becomes two-dimensional at Planck
scales
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Distribution Function For Atoms Of Space

The area measure gives exactly what we need,
along with a zero-point-contribution

1 . 1 2 1 2 a_b
f(ZU ,na) =1- ggL =1-— ngRabn n

Zero-point contribution is important; degrees of
freedom of Planck 2-sphere: AwL3% /L% = 4w
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COSMIC DENSITY

Pinf Nsur = Npuik

INFLATIONARY RHASE

Nsur + Nbulk

peq MATTER-RADIATION

EQUALITY

PA
COSMOLOGICAL _
CONSTANT N sur — N bulk

SIZE OF THE UNIVERSE



Value of the Cosmological Constant

Hamsa Padmanabhan, T.P. [arXiv:1302.3226]
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Speculation

S /’DniP(a:i,na) exp[,uL‘}JTabnanb]

pnL3

P ) 5 Gl )] = e (— = PRabnanb)
v

2uL (Tupn®nty ~ 2uL} (Top) (n*n®) =1

MAY BE ONE SHOULD NOT THINK OF
COSMOLOGY AS PART OF GENERAL
RELATIVITY!
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Open Questions

» Matter and Geometry need to emerge together for
proper interpretation of T%°n,n; at the microscopic
scale. How do we do this?

» How do we reconcile/combine action extremum for
matter with entropy extremum for gravity?

» How do we interpret evolution of f(z?, n;)?

» Generalisation to Lanczos-Lovelock models with
R,y — Rap: What happens at microscopic
scales?
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» Demanding that gravity is immune to zero-level of energy
leads to a variational principle with an auxiliary null vector

» The variational principle, geometrical variables and evolution
equation have a thermodynamic interpretation if we set
n; = 4;

» If we take number of atoms of spacetime at an event to be
proportional to the area measure in a spacetime with
zero-point length, we get the correct variational principle

» A Planck scale 2-sphere has 47 degrees of freedom which
allows the determination of the cosmological constant
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