EmQM15 Emergent Quantum Mechanics 2015 Vienna, 23-25 October 2015

Models of spontaneous wave function collapse: what they are, and how they can be tested.

Angelo Bassi – University Trieste & INFN

Collapse models: What they are

G.C. Ghirardi, A. Rimini, T. Weber , Phys. Rev. D 34, 470 (1986)

They are nonlinear and stochastic (phenomenological) modifications of the Schrödinger equation, which include the collapse of the wave function

$$d|\psi\rangle_{t} = \begin{bmatrix} -\frac{i}{\hbar}Hdt + \sqrt{\lambda}(A - \langle A \rangle_{t})dW_{t} - \frac{\lambda}{2}(A - \langle A \rangle_{t})^{2}dt \end{bmatrix} |\psi\rangle_{t}$$
quantum collapse

 $\langle A \rangle_t = \langle \psi_t | A | \psi_t \rangle \longrightarrow$ nonlinear

The wave function is dynamically and stochastically driven by the noise $\rm W_t$ towards one of the eigenstates of the operator A

This form is **fixed** by the requirement of **no-faster-than-light signaling** and **norm conservation** (Adler's book on Trace Dynamics).

Collapse due to Gravity?

Penrose, Diosi ...

No one really knows.

But the gravitational coupling to matter is the right one for the collapse... almost the right one

$$\frac{d}{dt}|\psi_t\rangle = \left[-\frac{i}{\hbar}H + \int d^3\mathbf{x}\,\hat{M}(\mathbf{x})h(\mathbf{x},t) + O(\hat{M},h)\right]|\psi_t\rangle$$

Anti-Hermitian coupling between mass density and gravity → no grav. Waves (S.L. Adler, arXiv:1401.0353) Higher order, **non-linear terms**

A different theory of gravity would be needed.

Side note on the Schrödinger-Newton equation: it is not a collapse equation in the sense of collapse models. But it does collapse the wave function, and it could serve to discriminate whether gravity is quantum or fundamentally classical (A. Großardt *et al.*, ArXiv:1510.01696)

CSL model and its variations

REVIEW: A. Bassi and G.C. Ghirardi, *Phys. Rept.* <u>379</u>, 257 (2003)

REVIEW: A. Bassi, K. Lochan, S. Satin, T.P. Singh and H. Ulbricht, *Rev. Mod. Phys.* <u>85</u>, 471 (2013)

Infinite temperature models

No dissipative effects

Finite temperature models

Dissipation and thermalization

White noise models

All frequencies appear with the same weight

GRW / CSL

G.C. Ghirardi, A. Rimini, T. Weber , *Phys. Rev. D* <u>34</u>, 470 (1986)
G.C. Ghirardi, P. Pearle, A. Rimini, *Phis. Rev. A* <u>42</u>, 78 (1990)

QMUPL

L. Diosi, Phys. Rev. A 40, 1165 (1989)

DP

L. Diosi, Phys. Rev. A 40, 1165 (1989)

Dissipative QMUPL

 A. Bassi, E. Ippoliti and B. Vacchini, J. Phys. A <u>38</u>, 8017 (2005).

Dissipative GRW & CSL

A. Smirne, B. Vacchini & A. Bassi *Phys. Rev. A* <u>90</u>, 062135 (2014) A. Smirne & A. Bassi *Nat. Sci. Rept.* <u>5</u>, 12518 (2015)

Colored noise models

The noise can have an arbitrary spectrum

Non-Markovian CSL

P. Pearle, in *Perspective in Quantum Reality* (1996)

S.L. Adler & A. Bassi, *Journ. Phys. A* <u>41</u>, 395308 (2008). arXiv: 0807.2846

Non-Markovian QMUPL

A. Bassi & L. Ferialdi, *Phys. Rev. Lett.* <u>103</u>, 050403 (2009)

Non-Markovian & dissipative QMUPL

L. Ferialdi, A. Bassi Phys. Rev. Lett. <u>108</u>, 170404 (2012)

(Mass-proportional) CSL model

P. Pearle, Phys. Rev. A 39, 2277 (1989). G.C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A 42, 78 (1990)

$$\begin{split} \left(\frac{d}{dt} |\psi_t\rangle &= \left[-\frac{i}{\hbar} H + \frac{\sqrt{\gamma}}{m_0} \int d^3x \left(M(\mathbf{x}) - \langle M(\mathbf{x}) \rangle_t \right) dW_t(\mathbf{x}) \right. \\ &\left. -\frac{\gamma}{2m_0^2} \int \int d^3x d^3y \; G(\mathbf{x} - \mathbf{y}) \left(M(\mathbf{x}) - \langle M(\mathbf{x}) \rangle_t \right) \left(M(\mathbf{y}) - \langle M(\mathbf{y}) \rangle_t \right) \right] |\psi_t\rangle \end{split}$$

$$M(\mathbf{x}) = ma^{\dagger}(\mathbf{x})a(\mathbf{x}) \qquad \qquad G(\mathbf{x}) = \frac{1}{(4\pi r_C)^{3/2}} \exp[-(\mathbf{x})^2/4r_C^2]$$

$$w_t(\mathbf{x}) \equiv \frac{d}{dt} W_t(\mathbf{x}) = \text{noise} \quad \mathbb{E}[w_t(\mathbf{x})] = 0 \quad \mathbb{E}[w_t(\mathbf{x})w_s(\mathbf{y})] = \delta(t-s)G(\mathbf{x}-\mathbf{y})$$

Two parameters

 $\gamma = \text{collapse strength}$ $r_C = \text{localization resolution}$

$$\lambda = \gamma / (4\pi r_C^2)^{3/2} = \text{collapse rate}$$

The collapse rate

The collapse rate of the CSL model

Microscopic world (few particles)

OUANTUM - CLASSICAL TRANSITION (Adler - 2007)

Mesoscopic world Latent image formation

perception in the eye $(\sim 10^4 - 10^5 \text{ particles})$

S.L. Adler, JPA 40, 2935 (2007)

A. Bassi, D.A. Deckert & L. Ferialdi, EPL 92, 50006 (2010)

QUANTUM - CLASSICAL TRANSITION

(GRW - 1986)

 $\lambda \sim 10^{-17} \mathrm{s}^{-1}$

Macroscopic world (> 10¹³ particles)

G.C. Ghirardi, A. Rimini and T. Weber, PRD 34, 470 (1986)

 $r_C = 1/\sqrt{\alpha} \sim 10^{-5} \mathrm{cm}$

Matter-wave interferometry world mass record: 10⁴ amu (Vienna, 2013)

Brief history of matter-wave interferometry:

• C60 (720 AMU)

M. Arndt et al, *Nature* <u>401</u>, 680 (1999)

• C70 (840 AMU)

L. Hackermüller et al, Nature 427, 711 (2004)

• C30H12F30N2O4 (1,030 AMU)

S. Gerlich et al, Nature Physics 3, 711 (2007)

• Largest Molecule (10,000 AMU)

S. Eibenberger et al. PCCP 15, 14696 (2013)

NANOQUESTFIT: 10⁵ AMU

EU Project under FP7

Future experiments: ~10⁶ AMU

K. Hornberger *et al.*, Rev. Mod. Phys. <u>84</u>, 157 (2012) P. Haslinger *et al.*, Nature Phys. <u>9</u>, 144 (2013)

MAQRO consortium for a space mission with ESA (micro-gravity)

Matter-wave interferometry Upper bounds on the collapse parameters

Spontaneous photon emission

S. Donadi, D.-A. Deckert, A. Bassi, Ann. Phys. 340, 70 (2014) and references therein

- 1. One needs to introduce mass proportionality in the model
- 2. Adler's value for λ is ruled out by <u>3 orders of magnitude</u>, unless the noise spectrum has a cut off below 10¹⁸ Hz. (ArXiv 1501.04462)

Strongest upper bound on the collapse parameter $\boldsymbol{\lambda}$

Non interferometric tests with opto-mechanical systems

M. Bahrami, M. Paternostro, A. Bassi & H. Ulbricht, Phys. Rev. Lett. 112, 210404 (2014)

Qualitative behavior

Quantitative behavior

Experimental bounds from non-interferometric tests

Cantilever:

OK for CSL and non-Markovian CSL. Probably not OK for dissipative CSL, with T = 1K. ArXiv:1510.05791

X-ray:

OK for CSL and dissipative CSL. Not OK for non-Markovian CSL, with cutoff below 10¹⁸ Hz ArXiv:1501.04462

Acknowledgements

THE GROUP (www.qmts.it)

- Postdocs: M. Bahrami, S. Donadi, F. Fassioli, A. Grossardt
- Ph.D. students: G. Gasbarri, M. Toros, M. Bilardello, M. Carlesso
- Graduate students: A. Rampichini

www.infn.it

JOHN TEMPLETON FOUNDATION

SUPPORTING SCIENCE~INVESTING IN THE BIG QUESTIONS

www.nanoquestfit.eu

www.templeton.org